
F
c h a p t e r t w o

Fool’s Gold
Hope is a good breakfast, but it is a bad supper.

francis bacon

Software problems have persisted partly because of the bewitching
appeal of a few common, ineffective practices. During the California

Gold Rush in the late 1840s and early 50s, some prospectors were deceived
by fool’s gold—iron pyrite—a substance that has the luster and sparkle of
gold. Unlike gold, iron pyrite is flaky, brittle, and virtually valueless. Expe-
rienced miners know that real gold is soft, malleable, and doesn’t break
under pressure. For 50 years, software developers have been succumbing
to the temptation of their own fool’s gold. They are drawn to flawed prac-
tices that have a seductive appeal, but the practices that make up software’s
fool’s gold, like iron pyrite, are flaky, brittle, and virtually valueless.

Moving the Block

Looking back many centuries before the California Gold Rush, suppose
that you were working on one of the ancient pyramids and were given the
assignment to move an enormous stone block 10,000 meters from a river
to the site of a pyramid under construction, as shown in Figure 2-1. You
are given 100 days to move the block and 20 people with which to move it.

You are allowed to use any method you like to get it to its destination.
Each day, you have to move the block an average of 100 meters closer to the
pyramid, or you have to do something that will reduce the number of days
needed to travel the remaining distance.

7

29782 01 pp001-226 r6jm.ps 6/2/03 4:23 PM Page 7

1

2

4

7

1

2

4

7

1

2

4

7

1

2

4

Some block-moving teams might immediately begin pushing the block,
trying to move it with brute force. With a very small block, this method
might work, but with a heavy block resting directly on desert sand, this
approach won’t move the block very quickly, if at all. If the block moves
ten meters per day, the fact that it is moving at all might be satisfying, but
the team is actually falling 90 meters per day behind. “Progress” doesn’t
necessarily mean sufficient progress.

The smart block-moving team wouldn’t jump straight into trying to
move the block with brute force. They know that for all but the smallest
blocks, they will need to spend time planning how to move the block
before they put their muscles into it. After analyzing their assignment, they
might decide to cut down a few trees and use the tree trunks as rollers, as
shown in Figure 2-2. That will take a day or two, but chances are good that
it will increase the speed at which they can move the block.

What if trees aren’t readily available, and the team has to spend several
days hiking up river to find any trees? The hike is still probably a good

8 � chapter 2: fool ’s gold

figure 2-1

One way to think of a software project is as a heavy block of stone. You must either move
the block one day closer to the final destination each day, or you must do something that
will enable you to traverse the remaining distance in one less day.

29782 01 pp001-226 r6jm.ps 6/2/03 4:23 PM Page 8

investment, especially since the team that begins by trying to use brute
force will only move the block a fraction of the distance needed each day.

Similarly, the smart block-moving team might want to prepare the sur-
face over which they’ll be moving the block. Instead of pushing it across
the sand, they might want to create a level roadway first, which will be an
especially good idea if they have more than just this one block to move.

A really sophisticated block-moving team might start with the roller
and road system, and eventually realize that having only the minimum
number of rollers available forces them to stop work too often; they have
to move the back roller to the front of the block every time they move the
block forward one roller-width. By having a few extra rollers on hand and
assigning some people to move the rollers from back to front, they’re bet-
ter able to maintain their momentum.

They might also realize that their pushing is limited by how many
people can fit around the block’s base. They might create a harness so that
they can pull the block from the front at the same time they’re pushing it

Moving the Block � 9

figure 2-2

Whether moving a block of stone or creating computer software, the smart team takes
time at the beginning of the project to plan its work so that it can work quickly and
efficiently.

29782 01 pp001-226 r6jm.ps 6/2/03 4:23 PM Page 9

1

2

4

7

1

2

4

7

1

2

4

7

1

2

4

from behind, as illustrated in Figure 2-3. As more people divide the work,
they find that each person’s work is easier, and the faster pace is actually
more sustainable than the slower one.

Stone Blocks and Software

How does this block moving relate to software? The movement of the
stone block is analogous to creating source code. If you have 100 days to
complete a software project, you either need to complete 1/100 of the
source code each day, or you need to do work that will allow you to com-
plete the remaining source code faster. Because the work of creating
source code is much less tangible than the work of moving a stone block,
progress at the beginning of a software project can be harder to gauge.
Software projects are vulnerable to a “last minute syndrome” in which the
project team has little sense of urgency at the beginning of a project, frit-

10 � chapter 2: fool ’s gold

figure 2-3

Smart teams continuously look for ways to work more efficiently.

29782 01 pp001-226 r6jm.ps 6/2/03 4:23 PM Page 10

ters away days on end, and works itself into a desperate frenzy by the end
of the project. Thinking of a project’s source code as a stone block makes it
clear that you can’t hope to conduct a successful project by sprinting at the
end. Every day, a software project manager should ask, “Did we move the
block one day closer to our destination today? If not, did we reduce our
remaining work by one day?”

Another way that moving a stone block relates to software is that, even-
tually, no matter how much planning you do, you do have to move the
block; you do have to write the source code. Source-code creation on all
but the smallest projects involves an enormous amount of detail work,
and it’s easy to underestimate it.

Code-and-Fix Development

The problem of not focusing enough on making rollers and preparing
roadways is by far the most common problem in software. About 75 per-
cent of the software project teams begin their projects by hurling them-
selves against the block and trying to move it with brute force.1 This
approach is called “code-and-fix development”—jumping straight into
coding without planning or designing the software first. Sometimes teams
do this because the team’s software developers are anxious to begin cod-
ing. Sometimes they do it because managers or customers are eager to see
tangible signs of progress. Code-and-fix development is universally inef-
fective on all but the tiniest projects.

The problem with the code-and-fix approach, as with the brute force
approach to moving the stone block, is that quick movement off the start-
ing line doesn’t necessarily translate into quick progress toward the finish
line. The team that uses a more advanced approach is putting a framework
in place that will allow the project to spin up to a high level of productivity
and finish efficiently. It is putting rollers under the block, clearing the
roadway, and preparing to focus the energy of the project team. The code-
and-fix project gets the block moving early, but it doesn’t move the block
far enough each day and the brute force approach isn’t sustainable. It typi-
cally leads to the creation of hundreds or thousands of defects early in the

Code-and-Fix Development � 11

29782 01 pp001-226 r6jm.ps 6/2/03 4:23 PM Page 11

1

2

4

7

1

2

4

7

1

2

4

7

1

2

4

project. Several studies have found that 40 to 80 percent of a typical soft-
ware project’s budget goes into fixing defects that were created earlier on
the same project.2

Figure 2-4 illustrates the way that productivity erodes over time on a
code-and-fix project. Little or no effort is put into planning and process
management at the beginning of the project. Some small amount of effort
goes into thrashing (unproductive work), but most work goes into coding.
As the project moves forward, fixing defects becomes an increasingly
prominent feature of the project. By the end of the project, the project that
uses code-and-fix development is typically spending most of its time fix-
ing the defects that it created earlier.

As Figure 2-4 suggests, the lucky code-and-fix projects are brought to
completion while they are still eking out some small amount of coding

12 � chapter 2: fool ’s gold

figure 2-4

Using a code-and-fix approach, the lucky projects finish while they are still eking out a
small amount of productive work. The unlucky projects get stuck in a zone where 100
percent of their effort is consumed by thrashing, planning, and process management.
Source: Adapted from Software Project Survival Guide.3

100%

0%

Percent
of Effort

Thrashing (unplanned rework
and other wasted effort)

Planning and
Process Management

Visible Progress (Coding)

Time

The lucky
projects

finish here.

The unlucky
projects

get stuck here.

29782 01 pp001-226 r6jm.ps 6/2/03 4:23 PM Page 12

progress. The unlucky projects get stuck on the far right side of the dia-
gram where 100 percent of their available effort is consumed by planning,
process management, and thrashing, and they are not making any coding
progress. Without enough up-front planning, the code quickly becomes
flaky and brittle. Some of these projects might be rescued by taking steps
to push the team back to the left enough that they can eke out a release.
The remaining projects are eventually cancelled.

This gloomy picture is no exaggeration. Several studies have reported
that about 25 percent of all software projects are eventually cancelled.4 At
the time the average project is cancelled, it’s 100 percent over budget and is
caught in an extended debug, test, and fix cycle (thrashing). The reason it’s
cancelled is the perception that its quality problems are insurmountable.5

The irony of this dynamic is that these unsuccessful projects eventually
do as much planning and process management as a successful project
would. They have to implement defect tracking to manage all the bugs
being reported. They begin estimating more carefully as the release date
approaches. Toward the end of the project, the project team might re-
estimate as often as every week or even every day. They spend time manag-
ing expectations of project stakeholders, convincing them that the project
will eventually be released. They may begin tracking defects and imposing
standards for debugging code before it’s integrated with already-debugged
code. But because they begin these practices late in the project, the benefits
from these practices are leveraged over only a small part of the project.

The kinds of practices they implement are different from the kinds a
more effective organization would implement in a project’s early stages.
And many of the practices they implement wouldn’t have been needed if
the project had been run well from the beginning.

As Figure 2-5 illustrates, the most sophisticated organizations—those
that produce the most reliable software for the least cost and with the
shortest schedules—spend a relatively small percentage of their budgets
on the construction part of a project. The least sophisticated organizations
spend practically their whole budgets on coding and fixing bugs in their
code. Their total budgets are much higher because they don’t lay any
groundwork for working efficiently. (I’ll return to this dynamic in more
detail in Chapter 14.)

Code-and-Fix Development � 13

29782 01 pp001-226 r6jm.ps 6/2/03 4:23 PM Page 13

1

2

4

7

1

2

4

7

1

2

4

7

1

2

4

Code-and-fix development continues to be used because it is appealing
in two ways. First, it allows the project team to show signs of progress
immediately—they can begin moving the stone block 10 meters per day
the first day, while the more effective team is still out cutting down trees,
preparing the roadway for a smooth trip, and showing no visible signs
of progress on the real problem of moving the block. If managers and
customers aren’t very sophisticated about the dynamics of a successful
project, a code-and-fix approach looks appealing. A second source of
code-and-fix development’s appeal is that it requires no training. In an
industry in which the average level of software engineering training is low,
it has been the most common method by default.

14 � chapter 2: fool ’s gold

figure 2-5

Advanced software development approaches require more work during the early stages
of the project to eliminate an enormous amount of unnecessary work in the later stages
of a project.6

Requirements
Analysis

Architecture Detailed
Design

Construction Testing and
Debugging

Relative
Effort

Typical Project
(Pathological Project)

Advanced Project
(Healthy Project)

29782 01 pp001-226 r6jm.ps 6/2/03 4:23 PM Page 14

The code-and-fix approach is one form of software fool’s gold. It seems
attractive at first glance, but experienced software developers recognize it
as having little value.

Focus on Quality

You might assume that a software project can be shortened by spending
less time on testing or technical reviews. “Needless overhead!” say people
with a taste for code-and-fix development. Industry experience indicates
otherwise. An attempt to trade quality for cost or schedule actually results
in increased cost and a longer schedule.

As Figure 2-6 illustrates, projects that remove about 95 percent of their
defects prior to release are the most productive; they spend the least time

Focus on Quality � 15

figure 2-6

Up to a point, the projects that achieve the lowest defect rates also achieve the shortest
schedules. Most projects can shorten their schedules by focusing on fixing defects earlier.
Source: Adapted from Applied Software Measurement: Assuring Productivity and Quality, 2d Ed.7

Project
Effort

Only life-critical or
mission-critical projects

perform here

The most efficient
projects perform here

The average
organization is
here (≈ 85%)

Percentage of Defects
Removed before Release

≈ 95%100%

29782 01 pp001-226 r6jm.ps 6/2/03 4:23 PM Page 15

1

2

4

7

1

2

4

7

1

2

4

7

1

2

4

fixing their own defects. Beyond about 95 percent defect removal, projects
have to expend extra effort to improve quality. Short of 95 percent, proj-
ects can become more efficient by removing more defects sooner. Approx-
imately 75 percent of software projects presently fit into this category. For
the projects in this category, the attempt to trade quality for cost or sched-
ule is another example of fool’s gold. It’s also an example of a software
project dynamic that isn’t really new. IBM discovered 25 years ago that
projects that focused their efforts on attaining the shortest schedules had
high frequencies of cost and schedule overruns. Projects that focused on
achieving low defect counts had the best schedules and the highest pro-
ductivities.8

Some Fool’s Gold Is Silver

Technologies and methodologies that are associated with extravagant
productivity claims are called “silver bullets” because they are supposed to
slay the werewolf of low productivity.9 For decades, the software industry
has been plagued by claims that the UmptyFratz Innovation dramatically
improves development speed. In the 1960s, on-line programming was as-
sociated with this claim. In the 1970s, it was third-generation languages. In
the 1980s, advocates for artificial intelligence and CASE tools made these
promises. In the 1990s, object-oriented programming was lauded as the
next great productivity boon. In the early 2000s, it was development in
Internet time.

Suppose that a stone-block project team starts out using the brute-force
method to move the stone block. After a few days, the team leader can see
that progress isn’t fast enough to meet the project’s goals. Fortunately, he
has heard of an amazing animal called an “elephant.” Elephants can weigh
almost 100 times as much as an adult human being and are extremely
powerful. The project leader mounts an expedition to capture and bring
back an elephant to help the team move the block. After a three-week
safari, the team returns with a captive elephant. They harness the magnifi-
cent beast to the block and crack the whip. They hold their collective
breath, waiting to see just how fast the elephant will move the block. They

16 � chapter 2: fool ’s gold

29782 01 pp001-226 r6jm.ps 6/2/03 4:23 PM Page 16

may even finish ahead of schedule! As they watch, the elephant begins
pulling the block forward, much faster than the team of humans had ever
been able to accomplish. But then, unexpectedly, the elephant rears on its
hind legs. It breaks its harness, tramples two of its handlers, and runs off at
40 kilometers per hour, never to be seen again (as shown in Figure 2-7).
The stone-block team is dejected.“Maybe we should have spent more time
learning how to handle the elephant before we started using him on a real
project,” they thought. They wasted more than 20 percent of their sched-
ule looking for the elephant, lost two of their teammates, and are no closer
to the goal than when they started.

That, in a nutshell, is Silver Bullet Syndrome.
The elephant analogy is more apt than you might think. Robert L. Glass

chronicles 16 troubled projects in Software Runaways.10 Four of the proj-
ects he describes expected to be breakthrough successes because of their
use of silver bullet innovations. Instead, they ended up failing because of
the same innovations.

A special kind of silver bullet is forged from attempts to implement or-
ganizational process improvement half-heartedly. Some organizations try
to implement organizational improvement with buzzwords—TQM, QFD,

Some Fool’s Gold Is Silver � 17

figure 2-7

Silver bullet innovations often fall short of expectations.

29782 01 pp001-226 r6jm.ps 6/2/03 4:23 PM Page 17

1

2

4

7

1

2

4

7

1

2

4

7

1

2

4

SW-CMM, Zero Defects, Six Sigma, Continuous Improvement, Statistical
Process Control—these are all valuable practices when properly applied
by focusing on the substance of the practice and not just the form. But each
of these practices is virtually worthless when applied as buzzwords. Some
organizations cycle through them in 12-month intervals, as if ritualistically
chanting the initials of a current management fad could call forth im-
provements in quality and productivity. A special place in low-productivity
hell is reserved for these organizations. After years of Management By Buzz-
word (MBB), entire staffs become cynical about organizational improve-
ment initiatives in general, which adds one more challenge to escaping
from code-and-fix development.

The right innovation applied to the right project, supported by appro-
priate training and deployed with realistic expectations can be tremen-
dously beneficial as a long-term strategy. But new innovations aren’t
magic and they aren’t easy. When they are adopted with a get-rich-quick
attitude, innovations become fool’s gold.

Software Isn’t Soft

One more kind of fool’s gold is the belief that software is soft. Hard-
ware is “hard” because it is difficult to change. Software was originally
called “soft” because it was easy to change. For very small programs at the
dawn of computer programming, this might have been true. As software
systems have become more complex, however, this notion that software is
easy to change has become one of the most pernicious ideas in software
development.

Several studies have found that changing requirements—attempts to
take advantage of software’s supposed softness—are the most common or
one of the most common sources of cost and schedule overruns.11 They
are also a major factor in project cancellations; in some cases, changes
resulting from creeping requirements can destabilize a product to such a
degree that it can’t be finished at all.12

A simple example illustrates why software isn’t as soft as people think.
Suppose that you are asked to design a system that will initially print a set

18 � chapter 2: fool ’s gold

29782 01 pp001-226 r6jm.ps 6/2/03 4:23 PM Page 18

of five reports and eventually print a set of 10 reports. You have several
kinds of flexibility—softness—that you will need to be concerned about:

• Is ten an upper limit on the number of reports?

• Will the future reports be similar to the initial five reports?

• Will all of the reports always be printed?

• Will they always be printed in the same order?

• To what extent will the user be able to customize the reports?

• Will users be allowed to define their own reports?

• Will the reports be customizable and definable on the fly?

• Will the reports be translated to other languages?

No matter how carefully the software is designed, there will always be a
point at which the software won’t be soft. In the case of the reports, any of
the following areas could turn out to be “hard”:

• Defining more than ten reports

• Defining a new report that is different from the initial set of reports

• Printing a subset of the reports

• Printing the reports in a user-defined order

• Allowing the user to customize reports

• Allowing the user to define an entire custom report

• Translating the reports to another language that uses a Latin alphabet

• Translating the reports to another language that uses a non-Latin
alphabet or that reads right to left

What’s interesting about this example is that I can ask a whole hat full
of questions about the “softness” of these reports without knowing any-
thing whatsoever about the specific reports or even about the system
within which the reports will be printed. Simply knowing that there are
“some reports” raises many general questions about the different degrees
of softness.

Software Isn’t Soft � 19

29782 01 pp001-226 r6jm.ps 6/2/03 4:23 PM Page 19

1

2

4

7

1

2

4

7

1

2

4

7

1

2

4

It’s tempting to say that software developers should always design the
software to be as flexible as possible, but flexibility is an almost infinitely
variable entity, and it comes at a price. If the user really wants a standard
set of five preformatted reports, always printed as a set, and always printed
in the same order in the same language, the software developer should not
create an elaborate utility that allows the user to generate highly cus-
tomized reports. That could easily cost the customer 100 to 1,000 times as
much as providing the basic functionality the user really needs. The user
(or client or manager) has a responsibility to help software developers
define the specific flexibility needed.

Flexibility costs money now. Limiting flexibility saves money now, but
typically costs disproportionately more money later. The difficult engi-
neering judgment is weighing the known present need against the possible
future need and determining how “soft” or “hard” to make the “ware.”

How Fool’s Gold Pans Out

In conclusion, we hold the following software truths to be self-evident
(or evident after careful examination, anyway):

• The success of a software project depends on not writing source
code too early in the project.

• You can’t trade defect count for cost or schedule unless you’re work-
ing on life-critical systems. Focus on defect count; cost and schedule
will follow.

• Silver bullets are hazardous to a project’s health, though software in-
dustry history suggests that vendors will continue to claim otherwise.

• Half-hearted process improvement is an especially damaging kind
of silver bullet because it undermines future improvement attempts.

• Despite its name, software isn’t soft, unless it’s made that way in the
first place, and making it soft is expensive.

The software world has had 50 years to learn these lessons. The most
successful people and organizations have taken them to heart. Learning to

20 � chapter 2: fool ’s gold

29782 01 pp001-226 r6jm.ps 6/2/03 4:23 PM Page 20

resist software’s fool’s gold consistently is one of the first steps the software
industry needs to take on the road to creating a true profession of software
engineering.

Notes

1. This average is based on the number of software projects at SW-CMM Level 1. See
Chapter 14 for more details about this statistic.

2. Software Engineering Institute, quoted in Fishman, Charles, “They Write the
Right Stuff,” Fast Company, December 1996. Mills, Harlan D., Software Productiv-
ity, Boston, MA: Little, Brown, 1983, pp. 71–81. Wheeler, David, Bill Brykczynski,
and Reginald Meeson, Software Inspection: An Industry Best Practice, Los Alami-
tos, CA: IEEE Computer Society Press, 1996. Jones, Capers, Programming Produc-
tivity, New York: McGraw-Hill, 1986. Boehm, Barry W., “Improving Software
Productivity,” IEEE Computer, September 1987, pp. 43–57.

3. McConnell, Steve, Software Project Survival Guide, Redmond, WA: Microsoft
Press, 1997. This book contains a more in-depth description of these dynamics.

4. Johnson, Jim, “Turning Chaos into Success,” Software Magazine, December 1999,
pp. 30–39. The Standish Group, “Charting the Seas of Information Technology,”
Dennis, MA: The Standish Group, 1994. Jones, Capers, Assessment and Control of
Software Risks, Englewood Cliffs, NJ: Yourdon Press, 1994.

5. Jones, Capers, Assessment and Control of Software Risks, Englewood Cliffs, NJ:
Yourdon Press, 1994.

6. The “advanced project” profile is based on projects performed by NASA’s Soft-
ware Engineering Lab. The “typical project” is from project data I’ve compiled
from my consulting work and is consistent with data reported by Capers Jones,
Patterns of Software Systems Failure and Success, Boston, MA: International
Thomson Computer Press, 1996, and other sources.

7. Jones, Capers, Applied Software Measurement: Assuring Productivity and Quality,
2d Ed., New York: McGraw-Hill, 1997.

8. Jones, Capers, Programming Productivity, New York: McGraw-Hill, 1986.

9. Brooks, Frederick P., Jr., “No Silver Bullets—Essence and Accidents of Software
Engineering,” Computer, April 1987, pp. 10–19.

10. Glass, Robert L., Software Runaways, Englewood Cliffs, NJ: Prentice Hall, 1998.

11. Vosburgh, J., B. Curtis, R. Wolverton, B. Albert, H. Malec, S. Hoben, and Y. Liu,
“Productivity Factors and Programming Environments,” Proceedings of the 7th

Notes � 21

29782 01 pp001-226 r6jm.ps 6/2/03 4:23 PM Page 21

1

2

4

7

1

2

4

7

1

2

4

7

1

2

4

International Conference on Software Engineering, Los Alamitos, CA: IEEE Com-
puter Society, 1984, pp. 143–152. Lederer, Albert L., and Jayesh Prasad, “Nine Man-
agement Guidelines for Better Cost Estimating,” Communications of the ACM,
February 1992, pp. 51–59. The Standish Group, “Charting the Seas of Information
Technology,” Dennis, MA: The Standish Group, 1994. Jones, Capers, Assessment
and Control of Software Risks, Englewood Cliffs, NJ: Yourdon Press, 1994.

12. Jones, Capers, Assessment and Control of Software Risks, Englewood Cliffs, NJ:
Yourdon Press, 1994.

22 � chapter 2: fool ’s gold

29782 01 pp001-226 r6jm.ps 6/2/03 4:23 PM Page 22

